SKU:DFR0654 (https://www.dfrobot.com/product-2195.html)

(https://www.dfrobot.com/product-2195.html)

1. Introduction

FireBeetle ESP32-E, specially designed for |oT, is an ESP-WROOM-32E-based main controller board with dual-core chips. It supports WiFi and
Bluetooth dual-mode communication, and features small size, ultra-low power consumption, on-board charging circuit and easy-to-use
interface, which can be conveniently used for smart home loT, industrial IOT applications, wearable devices and so on. You can easily create your
own loT smart home system when connecting it with an loT platform like IFTTT. FireBeetle ESP32-E supports Arduino programming, and will
support Scratch graphical programming and MicroPython programming very soon. We provide you with detailed online tutorials and
application cases, and there are thousands of sensors with welding-free Gravity interface and actuators to help you get started easily. Besides,

-~~~

https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html

the stamp hole design makes it able to be easlly embedded In your PLB, greatly saving your costs and time to bulld and test prototype.

2. What is FireBeetle Series?

FireBeetle was originally designed to be a high-performance and more Mini Arduino open-source development board series. Now it is not only
fully compatible with Arduino development environment, but also comes with abundant hardware and software resources. FireBeetle will
support the various development environment like MakeCode, Mind+, Pingpong and MicroPython (to be improved soon), which allows you to
program your hardware by graphical programming, C language, Python or JS.

This open source board of high-flexibilty could bring you infinite possibilities! There are a large number of detailed tutorials and thousands of
easy-to-use Gravity peripherals that provide you with the simplest way to program. No matter you are a student, an electronic enthusiast, an
artist or a designer, this would be your best partner to open up the world of electronic without dealing with complicated circuits, brain-buring
codings, and all complex communication protocols. Turn your worthy ideas into fantastic reality with this FireBeetle board!

3. Features

e Compatible with DFRobot FireBeetle V2 Series

e Small Size of 25.4x60 mm

e ESP32 Dual-core low power maincontroller, WiFi+BT4.0

e GDI Display Port, esay to connect

e Onboard Charging Circuit and PH2.0 li-ion Battery Interface

4. Specification

Operating Voltage: 3.3V

Input Voltage: 3.3V~5.5V

Support Low-Power: 10uA

Max Discharge Current: 600mA@3.3V (mailto:600mA@3.3V) LDO

mailto:600mA@3.3V

Max Charge Current: 500mA
Support USB Charging

Processor: Tensilica LX6 dual-core processor (One for high-speed connection; one for independent application development)

Main Frequency: 240MHz

SRAM: 520KB

Flash: 32Mbit

Wi-Fi Standard: FCC/CE/TELEC/KCC

Wi-Fi Protocol: 802.11 b/g/n/d/e/i/k/r (802.11n, speed up to 150 Mbps), A-MPDU and A-MSDU Aggregation, support 0.4us guard interval)
Frequency Range: 2.4~2.5 GHz

Bluetooth Protocol: Bluetooth v4.2 BR/EDR and BLE standard compliant
Bluetooth Audio: CVSD and SBC audio
Operating Current: 80mA (Average)

Support Arduino download with one-key
Support MicroPython

On-chip Clock: 40MHz crystal, 32.768KHz crystal
Digital 1/0 x10(Arduino default)

Analog Input x5(Arduino default)

SPI x1(Arduino Default)

[IC x1(Arduino Default)

I2S x1(Arduino Default)

RGB_LED: 5/D8

Connector: FireBeetle V2 series compatible
Operating Temperature: -40°C~+85°C

Module Size: 25.4 x 60(mm)

Mount Hole Size: M2 Mounting hole with diameter of 2.0mm

5. Board Overview

Type-C
2/D9 LED Charge
RST = ¥ 27/D4 Button

5/D8 RGB g T PH2.0

LowPower :
..... g GDI

ESP32

FEE-WOOHM-TEAST

HESZHASH

17 16 4 12 36 33 34 35 1515

Type-c: USB Interface: 4.75v-5.5v
PH2.0 Li-ion Battery Connector: 3.5-4.2V

2/D9 LED: control LED via Pin 2/D9

Charging Indicator: red LED for indicating charging status: 1. Off when fully charged or not charged; 2. On when charging; 3. Quick flash
when powered by USB, and no battery connected.

RST Reset Pin: click the reset button to reset program
5/D8 WS2812 Indicator: control WS2812 RGB LED via pin 5/D8

Low Power Pad: This pad is specially designed for low power consumption. It is connected by default. You can cut off the thin wire in the
middle with a knife to disconnect it. After disconnection, the static power consumption can be reduced by 500 pA. The power consumption
can be reduced to 13 pA after controlling the maincontroller enter the sleep mode through the program. Note: when the pad is
disconnected, you can only drive RGB LED light via the USB Power supply.

GDI Display Interface: DFRobot dedicated display interface, details will be given later.
ESP32 Module: the newest ESP32-e module launched by ESPRESSIF
Button: control the button via pin 27/D4

Pinout

I

LN
Ha

18 EN GND

22 19 23

13 2 21

= 7 e
BT AR

TOUCH

e BT
C PIN

ITE-NOOUM-CEDST

JISSHASS®

17 16 4 12 36 39 34 35 15 2PASCLGND3VSIVC

3 1 2526 0 14

Overview

FireBeetle ESP32-E has up to 22 physical GPIOs, of which the pins 34-39 are only used as input pins, and others can be used as both input and
output pins. All logic voltages are 3.3V.

e Control: FireBeetle Enable/reset pin
e Touch: pin with capacitive touch function

e Analog: analog pin

e Port Pin: the default physical pin number of the chip, which can be directly used to control the corresponding pin
e |IDE: In Arduino IDE, the pin numbers have been remapped by FireBeetle, or you can directly use this symbol to control the corresponding
pin

e RTC PIN: FireBeetle supports low power function, and in deepsleep mode, only RTC pins can be used.

e Power: FireBeetle leads out the power source voltage and the voltage stablized 3.3V power supply through pins, which is convenient for
users to use.

e GND: FireBeetle common ground pin

Power

e GND: common ground for all power and logic

e VCC: positive voltage of USB/li-ion battery input(5V-output USB voltage when powered by USB; 3.7V-Output battery voltage when
powered by Li-ion battery)

e 3V3: output of 3.3 voltage regulator, can provide 500mA peak current

Control

e RST: connected to the reset pin of ESP32, can reset program

e EN: enable pin of 3.3V voltage regulator. It has been pulled up, so grounding can disable the 3.3V regulator.

GPIO

e D2 to D13: these are general purpose pins, which are usually used as digital pins or multiplexed function

e AQ to A4: these are analog input pins, of which A0-A3 can only be used as input pins.

e SDA-IIC(line) data pin

e SCL-lIC(line) clock pin

e SCK/MOSI/MISO: hardware SPI pins, you can use them as normal GPIO pins (but it is recommended to leave them idle as they are best
suited for high-speed SPI hardware)

UART

ESP32 has two UART ports, of which UARTO is for PC communication.

SerialPort Name Arduino TX RX
UARTO Serial Pin1 Pin3
UART?2 Serial2 Pin17 Pin16

7. Getting Started (Use for first time)

7.1 Arduino IDE Configuration

When using FireBeetle maincontroller for the frist time, you need know the following steps:

Add the json link in IDE

Download the core of the maincontroller

Select development board and serial port

Get to know serial monitor

Arduino IDE Setup

e Add URL to Ardudino IDE

Open Arduino IDE, click File->Preferences, as shown below:

€9 Blink | Arduino 1.8.10 - O ¥

Edit Sketch Tools Help
MNew Ctrl+N
Open... Ctrl+0

Open Recent
Sketchbook

Examples »

Close Ctrl+W

Save Ctrl+S =1 , the ftf for £ Zec
Save As... Ctrl+5hift+5 o

Page Setup Ctrl+Shift+P |21 pin 13, on MERIOOD on pin

Print Ctrl+P ependent of which board is use
Preferences Cirl+Comma | - e o A -

Quit Ctrl+Q en/Main/Products

by bi v

Click the icon marked with red below.

Preferences E

Settings Hetunr]{|

Sketchbook location:

C:\Users'Andy'\Document s '\ Ar duine

Editor language: _English (English) - | (requires restart of Arduine)
Editor font size: 12
Interface scale: .&ut-:-matic 100 % (requires restart of Arduine)

Show werbose output during: compilation upll:-ad

Compiler warnings: Hone -

Displa}r line numbers

[Enable Code Folding

Ferif}r code after upload

DUEE external editor

Check for updatez on startup

[¥] Update sketch files to new extension on sawe (. pde —» .ino)

DS&?E when verifying or uploading

Additional Boards Manager UBLs: |hub. com/Ameba8195/Arduine/raw/master/release/package_realtelr com_smeba_index. jso

More preferences can be edited directly in the file
C:\Users'\Andy'\AppData'Local \Arduinol5'preferences. txt

{edit only when Arduino 15 not running)

| 0k || Cancel

Copy the address to the newly popped up box: http://download.dfrobot.top/FireBeetle/package_DFRobot_index.json
(http://download.dfrobot.top/FireBeetle/package_DFRobot_index.json)

&

€% Additional Boards Manager URLs Iﬂ

Enter additional UBRLs, one for esach row

http://download. df robot. top/FireBeetle/package_esp32_index. json

Cliclk for a list of unofficial boards suppert UEL=

| 0k || camcel

L — — ——— — — — =

Click OK.

e Update board. Open Tools->Board->Boards Manager.

http://download.dfrobot.top/FireBeetle/package_DFRobot_index.json

-
Blink | Arduinc 1.8.0

[S

%3]

10

N 19
| o0
N =
21

-

L0

)

Il 25

e

4
File Edit Sketc%’ool He|'b

Elink

Turns on ar

Y
=4

Most Arduir

1t 15 attac

the correct
If wou want
the Technic

This exampl

Auto Format

Archive Sketch

Fix Encoding & Reload
Serial Monitor

Serial Plotter
WIFI101 Firmware Updater

Board: "Arduino/Genuino Zero (Programming Port)"
Port: "COM134"
Get Board Info

Programmer: "ArduinclSP.org"

Burn Bootloader

Ctrl+T

Ctrl+Shift+M
Ctrl+Shift+L

-

2 A

A rmen S AMEBTT)-bits ARM Cortex-M0+) Boards
Arduino/Genuino Zero (Programming Port)
Arduino/Genuine Zero (Mative USE Port)

modified & M
by Scott Fit
modified 2 5

ay 201
zgerald
ep 2016

by Arture Guadalupi

modified 5 5

ep 2016

by Colby Mewman

J// the setup function runs once when you press reset or power the board

void setup () {

LIC I, R

Al et 2l i THET DIUMTTTTIW e e ceedmand

The board will be automatically updated.

Arduino AVR Boards

Arduine Yan

Arduine/Genuine Uno

Arduine Duemilanove or Diecimila
Arduino Nano

Arduino/Genuino Mega or Mega 2560
Arduino Mega ADK

Arduine Leonardo

Arduino Leonardo ETH
Arduine/Genuine Micro

Arduino Esplora

Arduino Mini

Arduino Ethernet

Arduine Fio

m

i o
€% Boards Manager ﬁ

Type |All Filter your search. ..

Arduino AVR Boards by Arduino version 1.6.17 INSTALLED

Boards included in this package:

Arduino ¥uan, Arduino/Genuino Uno, Arduino Uno WiFi, Arduino Diecimila, Arduino Mano, Arduino/Genuino Mega, Arduino
MegaADE, Arduine Leonarde, Arduine Leonardeo Ethernet, Arduine/Genuine Micre, Arduine Esplora, Arduing Mini, Arduine Ethernet,
Arduine Fie, Arduine BT, Arduine LilyPadUSE, Arduine Lilypad, Arduine Pro, Arduine ATMegalG, Arduine Reobet Control, Arduine
Robot Mator, Arduingo Germrma, Adafruit Circuit Playground, Arduine Yan Mini, Arduine Industrial 101, Linina One,

Online help
More info

Arduino SAM Boards (32-bits ARM Cortex-M3) by Arduino
Boards included in this package:
Arduino Due,

Ornline help
More info

Arduino SAMD Boards (32-bits ARM Cortex-M0+) by Arduino version 1.6.2 INSTALLED

Boards included in this package:

Arduine/Genuine Zero, Arduing/Genuine MER1000, Arduing MERZera, Arduine MERFox1200, Arduine MO Pro, Arduine MO, Arduing
Tian, Adafruit Circuit Playground Express,

Orline help

m

| Downloading platforms index. ..

Wait for while, then you will find the FireBeetle-ESP32(V0.0.8 Available now) in the list. Click "Install":

-
€% Boards Manager

Type All » | |Filter yowr sesrch. ..

Maore info

FireBeete-ESP32 Mainboard |by DFRobot DFRDuino
Boards included in this package:

FireBettla-ESP32,

Mare info

0.0.3 v

Install)

DFRobot_esp8266 by DFRobot version 0.0.2 INSTALLED
Boards included in this package:
DFRobot ESPE266 Iot, DFRobot Education ESPE266,

Online help
More info

FireBeete-ESP8266 by DFRobot DFRduine version 2.3.0 INSTALLED
Boards included in this package:
FireBeetle-ESPE2EE,

Online help
More info

Done! You can find the installed FireBeetle-ESP32 board in the list now.

F ™
€% Boards Manager ﬁ

Type Al » | |Filter your search. ..

Boards included in this package:
SrmartEverything Faox,

Oriline help
Maore info

FireBeata-ESP32 Mainboard by DFRobot DFRDuing version l].l].t INSTALLED I
Boards included in this package:

FireBettle-ESP 32,
More info

DFRobot_esp8266 by DFRobot version 0.0.2 INSTALLED
Boards included in this package:
DFRobot ESPE2266 Iot, DFRobot Education ESPE2EE,

Online help —
Mare info

m

FireBeete-ESP8266 by DFRobot DFRduino version 2.3.0 INSTALLED
Boards included in this package: -

7.2 Blink

This is a blink program for users who use Arduino for the first time. The LED will blink regularly when burning codes into your board.
The default blink LED for FireBeetle-ESP32 board is D9/2.

e Select Board and Port

Pl RN B N D - W Y ST iy LI Y N el a ta Ta T o

® (IICK 100IS>BO0Oard; >€elecCt rirepbeetie-ed>r34-kt

e C(lick port to select the corresponding port

@ Blink | Arduina 1.8.13
File Edit Sketch Tools Help

Auto Format
Archive Sketch
Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter
WIF101 / WiFiININA Firmware Updater

lost Arc Board: "FireBeetle ESP32-E Boards”

Upload Speed: "921600"

Flash Frequency: "BOMHz"

Partition Scheme: "Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)”

Ctrl+T

Ctrl+Shift+1
Ctrl+Shift+M
Ctrl+Shift+L

3 Boards Manager...

Arduino AVR Boards
DFRobot AVR Boards (in sketchbook)

e Programming

1 DFRobot ESP32-E Boards # FircBeetle ESP32-E Boards
. d Core Debug Level: "None” >
] Port: "COM22" >
Get Board Info
modified p
rogrammer k4
DY =coty Burn Bootloader
modified—= T
modifiec Sep 201
0 o1lby Newman
Thigs examnle code 15 n the ~ 1 1 Aomain

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

e Copy the codes above to the Arduino IDE.

e Click the arrow to compile and burn the codes into your board.

Burning Completed

7.3 Bluetooth Tutorial

The ESP32 supports Bluetooth function. This part will mainly demonstrate how to use two FireBeetle-ESP32-E for realizing Bluetooth Data
Transparent Transmission.

//This example code is in the Public Domain (or CCO licensed, at your option.)
//By Victor Tchistiak - 2019

//

//This example demostrates master mode bluetooth connection and pin

//it creates a bridge between Serial and Classical Bluetooth (SPP)

//this is an extention of the SerialToSerialBT example by Evandro Copercini - 2018

//

#tinclude "BluetoothSerial.h"
BluetoothSerial SerialBT;

String MACadd = "AA:BB:CC:11:22:33";

uint8_t address[6] = {OxAA, OxBB, OxCC, ©x11l, ©Ox22, Ox33};
//uint8_t address[6] = {0x00, 0x1D, OxA5, 0x02, OxC3, 0x22};
String name = "ESP32test”;

char *pin = "1234"; //<- standard pin would be provided by default
bool connected;

void setup() {
Serial.begin(115200);
//SerialBT.setPin(pin);
SerialBT.begin("ESP32master", true);
//SerialBT.setPin(pin);
Serial.println("The device started in master mode, make sure remote BT device is on!");

// connect(address) is fast (upto 10 secs max), connect(name) is slow (upto 3@ secs max) as it needs
// to resolve name to address first, but it allows to connect to different devices with the same name.

// Set CoreDebuglLevel to Info to view devices bluetooth address and device names
connected = SerialBT.connect(name);
//connected = SerialBT.connect(address);

if(connected) {

Serial.println("Connected Succesfully!");
} else {

while(!SerialBT.connected(10000)) {

Serial.println("Failed to connect. Make sure remote device is available and in range, then restart app.");

}
}

// disconnect() may take upto 10 secs max
if (SerialBT.disconnect()) {
Serial.println("Disconnected Succesfully!");

}

// this would reconnect to the name(will use address, if resolved) or address used with connect(name/address).
SerialBT.connect();

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());
}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}

//This example code is in the Public Domain (or CCO licensed, at your option.)
//By Evandro Copercini - 2018

//
//This example creates a bridge between Serial and Classical Bluetooth (SPP)
//and also demonstrate that SerialBT have the same functionalities of a normal Serial

#include "BluetoothSerial.h"

#if ldefined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run “make menuconfig™ to and enable it
#tendif

BluetoothSerial SerialBT;

void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32test™); //Bluetooth device name
Serial.println("The device started, now you can pair it with bluetooth!");

}

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());
}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}

Result

2 coms — | Pl

Rk

rst:0xl (POWEEON RESET) ,boot:0x13 (SPI_FAST FLASH BOOT)

configsip: 0, SPIWP:(xee

clk drv:0x00,g drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wp drv:0x00
mode:DIO, clock diwv:1l

load:0x3f£ff0018,1len:4

load: 0x3fff001lc,len:1044

load: 0=x40078000, len:2885%¢

load: 0=x40080400,1len:5816

entry 0x40080¢cac

The device started, now vou can pair it with bluetooth!

MANEEN: B AN
MALEIE: TR

M Bahi#F [Show timestamp REEEHRMT v | 115200 FHFE ~ | | FTEhL

€D comas

mode:
load:
load:
load:
load:

0x3fff00lc, len

ets Jul 2% 201% 12:21:46

10xes

0x40072000, len: 88

0x40080400, len:
entry Ox40080cac
The device started in master mode, make sure remote BT device is on!
Connected Succesfully!
Disconnected Succesfully!

EHEE: HEE,
EddEl: FEM,

rat:0xl (POWERON RESET) ,boot:0x13 (SPI_FAST FLASH BOOT)
configsip: 0, SPIWP
clk drv:0x00,q drv:0x00,d_drv:0x00,ca30_drv:0x00,hd_drv:0x00,wp_drv:0x00
DI0, clock diw:
0x3ff£f001E, len:

tutoseroll [] Show timestamp

Both UL & CR

o

115200 baud -

Clesr output

Send "I'm the master" from the mater port.

The slave port displays "The slave receives: I'm the master"

Send "I'm the slave" from the slave port.

The master port displays "The master receives: I'm the slave".

Member Functions

e SerialBT.begin()
Description: init Bluetooth module

e SerialBT.disconnect()
Description: disconnect device
Return: ture/false

e SerialBT.connect()
Description: connect device
Return: ture/false

e SerialBT.available()
Description: judge if the Bluetooth received data

e SerialBT.read()
Description: read the information received by the Bluetooth
Return: string

e SerialBT.write()
Description: send message by Bluetooth

7.4 WiFi Tutorial

The ESP32 supports WiFi function. Here we build a WiFi server with the ESP32, and use the client to connect it to control an LED remotely.

/*
WiFiAccessPoint.ino Create a wifi hotspot, and provide a web service

Steps:
1. Connect to the wifi "yourAp"
2. Visit http://192.168.4.1/H to turn on the LED; Visit http://192.168.4.1/L to turn off the LED
OR
Run raw TCP "GET /H" and "GET /L" on PuTTY terminal with 192.168.4.1 as IP address and 80 as port
*/

#tinclude <WiFi.h>
#include <WiFiClient.h>
#tinclude <WiFiAP.h>

// Set your wifi and password
const char *ssid = "esp32";

const char *password = ;
WiFiServer server(89);

void setup() {
pinMode (LED_BUILTIN, OUTPUT);//Set pin LED to output mode
Serial.begin(115200);
Serial.println();
Serial.println("Configuring access point...");

// Configure wifi and get IP address
WiFi.softAP(ssid, password);
IPAddress myIP = WiFi.softAPIP();
Serial.print("AP IP address: ");

[P, B S e LA

Serial.printin(mylr);
server.begin();

Serial.println("Server started");

}

void loop() {
WiFiClient client = server.available(); // listen for incoming clients

if (client) { // if you get a client,
Serial.println("New Client."); // print a message out the serial port
String currentlLine = ""; // make a String to hold incoming data from the client
while (client.connected()) { // loop while the client's connected
if (client.available()) { // if there's bytes to read from the client,

char ¢ = client.read(); // read a byte, then

Serial.write(c); // print it out the serial monitor

if (c == "\n") { // if the byte is a newline character

// if the current line is blank, you got two newline characters in a row.

// that's the end of the client HTTP request, so send a response:

if (currentLine.length() == @) {
// HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
// and a content-type so the client knows what's coming, then a blank line:
client.println("HTTP/1.1 200 OK");
client.println("Content-type:text/html");
client.println();

// the content of the HTTP response follows the header:
client.print("Click here to turn ON the LED.
");
client.print("Click here to turn OFF the LED.
");

// The HTTP response ends with another blank line:
client.println();
// break out of the while loop:
break;
} else { // if you got a newline, then clear currentlLine:

currentlLine = ;

t
} else if (c != "\r') { // if you got anything else but a carriage return character,

currentLine += c; // add it to the end of the currentLine

}

// Check to see if the client request was "GET /H" or "GET /L":
if (currentLine.endsWith("GET /H")) {

digitalWrite(LED_BUILTIN, HIGH); // GET /H turns the LED on
}
if (currentLine.endsWith("GET /L")) {

digitalWrite(LED_BUILTIN, LOW); // GET /L turns the LED off
}

}
}

// close the connection:
client.stop();
Serial.println("Client Disconnected.");

Result

Connect to the WiFi with a phone, and access 192.168.4.1 through the browser. As shown in the figure, the IP address is 192.168.4.1, and the
server has been started.

& comzz

Rk

rst:dxl

configsip: 0, SPIWP

clk drv:0x00,g drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wp drv:0x00
:DIO, clock div:
O=x3fff0018,1len:

moce

load:
load:
load:
load:

O0=x3fff001c, len
0x40078000, 1len
0x40080400, 1len

entry 0x40080¢ac

Configuring access polint.
AP TP address:

Server started

:Dxes

1
4
:1044
:BE56
15816

(POWERON RESET) ,boot:0x13

192.1e8.4.1

(SPI_FAST FLASH BOOT)

Eiﬂﬁﬁ DS]!’I.D'F timestamp

ERERMT v

115200 FE%E

S

Use the browser to access the IP address, then you will get the result as shown in the figure below

Click here to turn ON the LED.

Click here to turn OFF the LED.

Click to turn the LED on/off.

HT i

Member Functions
e begin()
Description: Init WiFi module

o softAP(ssid,password)
Description: Configure WiFi to AP mode, and set name and password
Parameter:

o ssid: WiFi name in AP mode

o password: WiFi password in AP mode

e disconnect()
Description:disconnect client

e connect()
Description: connect client

e read()
Description:
Read the data received by WiFi

e write()
Description: Send data by WiFi

7.5 Hall Sensor

The ESP32 comes with a hall sensor that presents positive/negative number when approaching a mangnetic field.

void setup()

{
Serial.begin(9600);

}
void loop()

{
Serial.printf("hallRead:%d\n",hallRead());

delay(200);

Result

i & COoMs

I L L IN=ELL . o

hallBRead:-c0
hallRead:-57
hallRead:-10
AhallRead:-53
hallEead:-51
@hallRead:-72
hallRead:-%4
hallERead:-c6
lhallRead:-57
hallEead:-&5
ghallRead:-5%
hallRead:-58

=1 T DA=~A _CO

nu

-JLLG..L_LL\'EG._I.- o

F BzhZER [Sher timestamp oEETEE | |9600 EYEE & B Hith

Rl

Member Function

¢ hallRead()
Description: read the value of built-in hall sensor Return: return integer 0-255; Positive number for North pole; Negative number for South

pole. The stronger the magnetic field, the greater the absolute value

7.5 Compacitive Keys

ESP32 provides the function of capacitive touch sensor. There are 9 touch sensors (TO, T2 ~ T9)available, corresponding to pins 4, 2, 15, 13, 12,
14, 27, 33 and 32 respectively. There is no need to set PinMode. The return value of touchRead() is within 0 ~ 255. The greater the touch force,
the smaller the return value. Burning this sample code into your board, use the pin 4/D12 as the touch key, the touch value will be returned

through the serial port monitor.

void setup()

{
Serial.begin(9600);

}

void loop()

{
Serial.printf("touch:%d\n",touchRead(4));

}

Result

& coms

RiE

touch:
touch:
touch:
touch:
touch:
touch:
touch:
touch:
touch:
touch:
touch:
touch:

touch:

T

&4
&4
64
14
11

L I VI o AT B U R s I 4

BzhZERE [Sher timestamp

ERGARM v 9600 BHFE

HHiL

Member Functions

e TouchRead(pin)
Description: no need to set PinMode
Parameter:
o pin: touch sensor pin to be called

o Return*: range 0~255. The stronger the touch force, the greater the return value.

7.6 GDI

) 2.0" 320x240 IPS LCD(V1.U

This is a DFRobot special GDI display interface. It can be conveniently connected to a screen with 18pin-FPC cable, easy to get started.

The pin list for GDI:

FPC PINS FireBeetle MO PINS Description

VCC 3V3 3.3V

BbE gNYM adjustment) L2/Q13 e Mo piNs BEEotion

GND GND GND

SCLK 18/SCK SPI clock

MOSI 23/MOSI Master output, slave input
MISO 19/MISO Master input, slave output
DC 25/D2 Data/command

RES 26/D3 Reset

CS 14/D6 TFT chip select

SDCS 13/D7 SD card chip select

FCS 0/D5 Font library

TCS 4/D12 Touch

SCL 22/SCL 12C Clock

SDA 21/SDA I2C Data

INT 16/D11 INT

BUSY-TE 17/D10 Anti-tearing Pin

X1 NC User-defined pin 1

X2 NC User-defined pin 2

When using FPC to connect a screen, configure the corresponding pins according to GDL demo. Generally, you only need to configure the three
pins for different maincontrollers.

GDI supported screen:
1. 1.54inch 240x240 IPS TFT LCD Display with MicroSD Card Breakout (https://www.dfrobot.com/product-2072.html)

2. 2.0inch 0x240 IPS TFT LCD Display with MicroSD Card Breakout (https://www.dfrobot.com/product-2071.html)
3. 2.8inch 320x240 IPS TFT LCD Touchscreen with MicroSD (https://www.dfrobot.com/product-2106.html)
4. 3.5inch 480x320 TFT LCD Capacitive Touchscreen (https://www.dfrobot.com/product-2107.html)

/*ESP32 and ESP8266*/

#elif defined(ESP32) || defined(ESP8266)
#define TFT_DC 25

#define TFT_CS 14

#define TFT_RST 26

For more details, please refer to: https://wiki.dfrobot.com/2.0_Inches_320_240_IPS_TFT_LCD_Display_with_MicroSD_Card_Breakout_SKU_DFR0664
(https://wiki.dfrobot.com/2.0_Inches_320_240_IPS_TFT_LCD_Display_with_MicroSD_Card_Breakout_SKU_DFR0664)

7.7 RGB_LED

FastLED is a powerful but easy-to-use Arduino third-party library for controlling LED strips such as WS2812 and LPD8806. At present, FastLED is
recognized as one of the most widely used LED controlling libraries by Arduino developers. FireBeetle integrates FastLED into the core library.
The following code demonstrates how to use the 5/D8 conneted RGB_LED.

https://www.dfrobot.com/product-2072.html
https://www.dfrobot.com/product-2071.html
https://www.dfrobot.com/product-2106.html
https://www.dfrobot.com/product-2107.html
https://wiki.dfrobot.com/2.0_Inches_320_240_IPS_TFT_LCD_Display_with_MicroSD_Card_Breakout_SKU_DFR0664

#tinclude <FastLED.h>

// How many leds in your strip?
#define NUM_LEDS 1

// For led chips like WS2812, which have a data line, ground, and power, you just

// need to define DATA PIN. For led chipsets that are SPI based (four wires - data, clock,
// ground, and power), like the LPD8806 define both DATA PIN and CLOCK_ PIN

// Clock pin only needed for SPI based chipsets when not using hardware SPI

#define DATA_PIN 5

#tdefine CLOCK_PIN 13

// Define the array of leds
CRGB leds[NUM_LEDS];

void setup() {
// Uncomment/edit one of the following lines for your leds arrangement.
// ## Clockless types ##
FastLED.addLeds<NEOPIXEL, DATA PIN>(leds, NUM_LEDS); // GRB ordering is assumed

void loop() {
//LED light up in red
leds[@] = CRGB::Red;
FastLED.show();
delay(500);
// LED light up in green
leds[@] = CRGB::green;
FastLED.show();
delay(500);
// LED light up in blue

1T-4-rnn ARAR L LT o

leds|v] = LRKUb:.blue;
FastLED.show();
delay(500);

}

Member Functions

e |leds[0] = CRGB::Red
Description: set the LED No.0 to red

e FastLED.show()
Description: light up or change LED color

e leds[0].r = 255
Description: Set the R value of the first LED on the LED strip to 255

e |leds[0].g = 125
Description: Set the G value of the first LED on the LED strip to 125

e leds[0].b =0
Description: Set the B value of the first LED on the LED strip to 0

7.8 Sleep Mode

In sleep mode, the power consumption can be reduced to 10pA (disconnect the low-power pad). The following will demonstrate how to enter
the sleep mode at a set time.

#define uS_TO_S FACTOR 1000000ULL /* Conversion factor for micro seconds to seconds */
#define TIME_TO_SLEEP 5 /* Time ESP32 will go to sleep (in seconds) */

RTC_DATA_ATTR int bootCount = 0;

/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print_wakeup_reason(){
esp_sleep wakeup_cause_t wakeup reason;

wakeup_reason = esp sleep get wakeup cause();

switch(wakeup_reason)

{
case ESP_SLEEP_WAKEUP_EXTO@ : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;

void setup(){
Serial.begin(115200);
delay(1000); //Take some time to open up the Serial Monitor

//Increment boot number and print it every reboot
++bootCount;

[l [S BN [N PSP S s | Y S SRy) N Ry e W N

Seridi.printin(boot numoer: + String(oooteLount));

//Print the wakeup reason for ESP32
print_wakeup reason();

/*

First we configure the wake up source

We set our ESP32 to wake up every 5 seconds

*/

esp_sleep_enable_timer_wakeup(TIME_TO SLEEP * uS_TO_S FACTOR);
Serial.println("Setup ESP32 to sleep for every " + String(TIME_TO_SLEEP) +
" Seconds");

/*

Next we decide what all peripherals to shut down/keep on

By default, ESP32 will automatically power down the peripherals

not needed by the wakeup source, but if you want to be a poweruser

this is for you. Read in detail at the API docs
http://esp-idf.readthedocs.io/en/latest/api-reference/system/deep_sleep.html
Left the line commented as an example of how to configure peripherals.

The line below turns off all RTC peripherals in deep sleep.

*/

//esp_deep_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
//Serial.println("Configured all RTC Peripherals to be powered down in sleep");

/*

Now that we have setup a wake cause and if needed setup the
peripherals state in deep sleep, we can now start going to
deep sleep.

In the case that no wake up sources were provided but deep
sleep was started, it will sleep forever unless hardware
reset occurs.

*/

Serial.println("Going to sleep now");

Serial.flush();

esp_deep_sleep_start();

Serial.println("This will never be printed");

i

void loop(){
//This is not going to be called
}

Member Functions

e esp_sleep_get_wakeup_cause()
Descriptin: Check which wake-up source triggered a wake-up from sleep mode

e esp_deep_sleep_start()
Descriptin: Enter sleep mode

e esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR)
Descriptin: user timer to start wake-up from deep sleep.

8. Arduino Tutorial Basics

8.1 GPIO

Digital 10

¢ digitalRead(pin)
Description: Reads the value from a specified digital pin, either HIGH or LOW.
Parameter:

o pin: the Arduino pin number you want to read

o digitalWrite (pin,value)
Description: Write a HIGH or a LOW value to a digital pin. Parameter:

o pin: the Arduino pin number.
o value: HIGH or LOW.

e pinMode(pin, mode)
Description: Configures the specified pin to behave either as an input or an output
Parameter:

o pin: the Arduino pin number to set the mode of.
o mode: INPUT, OUTPUT, or INPUT_PULLUP.

Control LED via Keys

Analog IO

¢ AnalogRead (pin)
Description: Reads the value from the specified analog pin.
Parameter:

o pin: the name of the analog input pin to read

¢ AnalogReference (type)
Description: Configures the reference voltage used for analog input
Parameter:

o type

e AnalogWrite (pin, value)
Description: Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightnesses or drive a motor at various
speeds. After a call to analogWrite(), the pin will generate a steady rectangular wave of the specified duty cycle until the next call to
analogWrite() (or a call to digitalRead() or digitalWrite()) on the same pin.

Parameter:
o pin: the Arduino pin to write to. Allowed data types: int.

o value: the duty cycle: between 0 (always off) and 255 (always on). Allowed data types: int.
8.2 Serial

¢ Serial.begin(speed)

Description: Sets the data rate in bits per second (baud) for serial data transmission. For communicating with Serial Monitor, make sure to
use one of the baud rates listed in the menu at the bottom right corner of its screen.
Parameter:

o speed: in bits per second (baud). Allowed data types: long.

e Serial.available()

Description: Get the number of bytes (characters) available for reading from the serial port.

Input

e Serial.read()
Description: Reads incoming serial data.

e Serial.peek()

Description: Returns the next byte (character) of incoming serial data without removing it from the internal serial buffer.

Output

e Serial.print()
Description: Prints data to the serial port
e Serial.printin()
Description: Prints data to the serial port followed by a carriage return character and a newline character

Software Serial

e SoftwareSerial()

Running time Function

e micros ()
Description: Returns the number of microseconds since the Arduino board began running the current program.
e millis ()
Description: Returns the number of milliseconds passed since the Arduino board began running the current program.

Delay Functions

e delay (ms)
Description: Pauses the program for the amount of time (in milliseconds) specified as parameter.
Parameter: ms: the number of milliseconds to pause. Allowed data types: unsigned long.

¢ delayMicroseconds (us)

Description: Pauses the program for the amount of time (in microseconds) specified by the parameter. There are a thousand microseconds
in a millisecond and a million microseconds in a second.

Parameter: us: the number of microseconds to pause. Allowed data types: unsigned int.

8.3 Tone Functions

¢ tone(pin, frequency, duration)

Description: Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A duration can be specified, otherwise the

wave continues until a call to noTone(). The pin can be connected to a piezo buzzer or other speaker to play tones.
Parameter:

o pin: the Arduino pin on which to generate the tone.

o freaquency: the frequency of the tone in hertz. Allowed data types: unsianed int.

v 1 v P -

o duration: the duration of the tone in milliseconds (optional). Allowed data types: unsigned long.

e noTone(pin)
Description: Stops the generation of a square wave triggered by tone(). Has no effect if no tone is being generated.
Parameter:

o pin: the Arduino pin on which to stop generating the tone
o frequency: the frequency of the tone in hertz. Allowed data types: unsigned int.

o duration: the duration of the tone in milliseconds (optional). Allowed data types: unsigned long.

8.4 Interrupt

e attachinterrupt(digitalPinTolnterrupt(pin), ISR, mode)
Description: External Interrupts
Parameter:
o pin: the Arduino pin number.

o ISR: the ISR to call when the interrupt occurs; this function must take no parameters and return nothing. This function is sometimes
referred to as an interrupt service routine.

o mode: defines when the interrupt should be triggered. Four constants are predefined as valid values:

e detachinterrupt(digitalPinTolnterrupt(pin))
Description: Turns off the given interrupt.
Parameter:

o interrupt: the number of the interrupt to disable

o pin: the Arduino pin number of the interrupt to disable

e interrupts ()

Description: Re-enables interrupts (after they've been disabled by nolnterrupts(). Interrupts allow certain important tasks to happen in the
background and are enabled by default. Some functions will not work while interrupts are disabled, and incoming communication may be
ignored. Interrupts can slightly disrupt the timing of code, however, and may be disabled for particularly critical sections of code.,

¢ nolnterrupts ()
Description: Disables interrupts (you can re-enable them with interrupts()). Interrupts allow certain important tasks to happen in the
background and are enabled by default. Some functions will not work while interrupts are disabled, and incoming communication may be
ignored. Interrupts can slightly disrupt the timing of code, however, and may be disabled for particularly critical sections of code.

8.512C

IIC Master/Slave Pin

Different from the one-to-one communication mode of serial port, bus communication is usually divided into master and slave. During
communication, the master is responsible for starting and terminating data transmission, and also outputs clock signal; the slave is addressed
by the host and responds to the communication request of the host. The communication rate is controlled by the host, and the master outputs
clock signal for all slaves on the bus through SCL pin. At the same time, 12C is a half duplex communication mode, that is, the devices on the bus
transmit communication data through SDA pins, and the sending and receiving of data are controlled by the host computer. Esp32 has two 12C
controllers (also known as ports) that handle communication on both 12C buses. Each 12C controller can run as a master or slave. Pin 21 is
default to SDA, pin 22 to SCL.

¢ begin(address)
Description: Initiate the 1IC and join the 12C bus as a master or slave.
Parameter:

e read()
Description: In the host, when the requestfrom() function is used to send the data request signal, the read() function is needed to obtain
the data; in the slave machine, the function is used to read the data sent by the host.
Parameter:

e available()

Description: Get the number of bytes (characters) of the received value
Parameter:

write: ()

Description: When it is in host state, the host will add the data to be sent to the sending queue; when it is in the slave state, the slave will
send the data to the requesting host.

Parameter:

o valuc: send as a single byte
o string: send as a series of bytes

o data: an array to send as a series of bytes

requestFrom(address, quantity)

Description: The host sends a data request signal to the slave. After using requestfrom(), the slave can use onrequest() to register an event
to respond to the host's request. The host can read the data through the available() and read() functions.

Parameter:

o quantity: the number of bytes to request

o address: ddress of the device to request bytes from

beginTransmission(address)

Description: Begin a transmission to the slave device with the given address. Subsequently, queue bytes for transmission with the write()
function and transmit them by calling endTransmission().

Parameter:

o address: address of the device to transmit to

endTransmission
Description: Ends a transmission
Parameter:

o stop: boolean. true will send a stop message, releasing the bus after transmission. false will send a restart, keeping the 1IC connection
active.

e onReceive() Description: 8. onReceive()
Function: Registers an event to be triggered when a slave device receives a transmission from a master.
Grammar: Wire.onReceive(handler)
Parameter:

o handler: the event to be triggered when the slave receives data; this should take a single int parameter (the number of bytes read
from the master) and return nothing, e.g.: void myHandler(int numBytes)

e onRequest(handler)
Description: Register an event to be triggered when a master requests data from this slave device. Grammar: Wire.onRequest(handler)
Parameter:

o handler: the event to be triggered, takes no parameters and returns nothing, e.g.: void myHandler()

8.6 SPI

SPI Pin

ESP32 has four SPI peripherals: SPIO, SPI1, HSPI and VSPI.

1. SPI0 is used for flash cache, and ESP32 maps the attached SPI flash device to memory.

2. SPI1 and SPIO share one hardware line, SPI1 is used to write flash chip.

3. HSPI and VSPI can be used arbitrarily.

4. SPI1, HSPI and VSPI have three chip selection lines, so as SPI host, ESP32 is allowed to drive up to three SPI devices.

e begin()
Description: initialize SPI communication. after calling this function, SCK.MOSI, and SS pins will be set to the output mode, and the SCK and

MOSI pins will be pulled down and the SS pin will be pulled up.

e end()
Description: turn off SPI BUS communication

e setBitOrder()
Description: Set transmission order

e setBitOrder()
Description: Set communication clock. The clock signal is generated by the master, and the slave is not configured. But the SPI clock
frequency of the master should be within the processing speed range allowed by the slave.

9. Advanced Tutorials

9.1 How to use SD Library

SD Class

e begin(cspin)
Description: Initializes the SD library and card. This begins use of the SPI bus (digital pins 11, 12, and 13 on most Arduino boards; 50, 51,
and 52 on the Mega) and the chip select pin, which defaults to the hardware SS pin (pin 10 on most Arduino boards, 53 on the Mega). Note
that even if you use a different chip select pin, the hardware SS pin must be kept as an output or the SD library functions will not work.
Parameter: cspin: the Arduino pin connected to the chip select line of the SD card.
Return: boolean type. True on success; false on failure

o exists()
Description: Tests whether a file or directory exists on the SD card. Grammar: SD. exists(filename)
Parameter:

o filename: the name of the file to test for existence, which can include directories (delimited by forward-slashes, /)

o Return*: boolean type, true if the file or directory exists, false if not

* open()
Description: Opens a file on the SD card. If the file is opened for writing, it will be created if it doesn't already exist (but the directory
containing it must already exist). Grammar: SD.open(filename) SD.open(filename, mode)

Parameter:

filename: the name the file to open, which can include directories (delimited by forward slashes, /) - char * mode (optional): the mode in
which to open the file, defaults to FILE_READ - byte. one of:

FILE_READ: open the file for reading; FILE_WRITE: open the file for reading and writing.

Return: a File object referring to the opened file: if the file couldn't be opened, this object will evaluate to false in a boolean

FILE_WRITE: open the file for reading and writing.

Return: a File object referring to the opened file;Return false if the file cannot be opened.

e remove()
Description: Remove a file from the SD card. If the file didn't exist, the return value is unspecified, so it is better to use SD. Exists (file name)
to detect whether the file exists before removing the file.
Grammar: SD. remove(filename)
Parameter:

o filename: the name of the file to remove, which can include directories (delimited by forward-slashes, /)

o Return:* boolean type. True if the removal of the file succeeded, false if not.

e mkdir(filename)
Description: Create a directory on the SD card.
Parameter:

o filename,the name of the directory to create, with sub-directories separated by forward-slashes, /

o Return*: boolean type. True if the creation of the directory succeeded, false if not.

o rmdir(filename)
Description: Remove a directory from the SD card. The directory must be empty. Grammar: SD.rmdir(filename)
Parameter:

o filename: the name of the directory to remove, with sub-directories separated by forward-slashes, /

o Return*: booleantype. True if the removal of the directory succeeded, false if not.

File Class

The file class provides the function of reading / writing files. The function of this class is very similar to the that of serial port related functions
used before. The member functions are as follows.

e available()
Description: Check if there are any bytes available for reading from the file. Grammar: file. available()
Parameter:

o file:an instance of the File class

o Return*: the number of bytes available

e close()
Description: Close the file, and ensure that any data written to it is physically saved to the SD card. Grammar: file. close()
Parameter:

o file:an instance of the File class

o Return*: none

o flush()
Description: Ensures that any bytes written to the file are physically saved to the SD card. This is done automatically when the file is closed.
Syntax: file.flush
Parameter:

o file: an instance of the File class

o Return*: none

e neek()

Description: Read a byte from the file without advancing to the next one.
Parameter:

o file: an instance of the File class

o Return*: The next byte (or character), or -1 if none is available.

e position()
Description: Get the current position within the file (i.e. the location to which the next byte will be read from or written to). Syntax: file.
position()
Parameter:

o file: an instance of the File class

o Return*: the position within the file

e print()
Description: Print data to the file, which must have been opened for writing. Syntax: file. print(data)file. print(data, BASE)
Parameter:

o file: an instance of the File class
o data: the data to print (char, byte, int, long, or string)

o BASE(optional): the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for
hexadecimal (base 16).

e printin()
Description: Print data, followed by a carriage return and newline, to the File, which must have been opened for writing. Syntax: file.
printin(data)file,printin(data, BASE)
Parameter:

o file:an instance of the File class
o data (optional): the data to print (char, byte, int, long, or string)
o BASE (opntional): the base in which to print numbers: BIN for binarv (base 2). DEC for decimal (base 10). OCT for octal (base 8). HEX for

AU | 1 J N

hexadecimal (base 16).

o seek()
Description: Seek to a new position in the file, which must be between 0 and the size of the file (inclusive). Syntax: file. seek(pos)
Parameter:

o file: an instance of the File class
o pos: the position to which to seek

o Return*: true for success, false for failure (boolean)

o size()
Description: Get the size of the file. Syntax: filue. size()
Parameter:

o file: an instance of the File class

o Return*: the size of the file in bytes

e read()
Description:Read from the file. Syntax: file.read Parameter:

o file: an instance of the File class

o Return:* The next byte (or character), or -1 if none is available.

o write()
Description: Write data to the file.
Syntax: file. write(data)file. write(buf, len)
Parameter:

o file: an instance of the File class

o data: the byte, char, or string (char*) to write
o buf: an array of characters or bytes

o len: the number of elements in buf

o Return*: the number of bytes written

e isDirectory()
Description: Reports if the current file is a directory or not Syntax: file.isDirectory()
Parameter:

o file: an instance of the File class

o Return*:boolean. True if the file is a directory, false if not

e openNextFile()
Description: Reports the next file or folder in a directory. Syntax: file.openNextFile()
Parameter:

o file: an instance of the File class that is a directory

o Return*: the next file or folder in the path

¢ rewindDirectory()
Description: Back to the first file in the directory Syntax: file.rewindDirectory()
Parameter:

o file: an instance of the File class.

o Return*: None

9.2 IR Remote Control

IRrecv Class

IDvAms Alace FAan A ticAad +A varcrAvA AnA AAacrAadA infrarad cianale RAfAava ticina thic Alace viai nAanAd +A Tnectantinta Aan AhiAact AfF thA Alace T4-

INITLYVY LIddD Ldll YT UDTU LU ITLTIVT dl U UTLUUCT 1HHaicu Siyiidid. bTIVIT UdIHIYy LD LIddd, yUU 11ITTU LU 11IdLadlitglc ail UVJTLL Ul LT Liddd. 1L

member functions are as follows.

e |[Rrecv()
Description: construct function of IRrecv class. Specify the pin the IR receiver connects to on Arduino. Syntax: IRrecvobject(recvpin)
Parameter:

o object: user-defined object name

o recvpin: Arduino pin connect to IR receiver

¢ enablelRIn()
Description: Init IR decoder Syntax: IRrecv. enablelRIn()
Parameter:

o IRrecv: an object of IRrecv class

e decode()
Description: detect if an IR signal is received Syntax: IRrecv.decode(&.results)
Parameter:

o [Rrecv: an object of IRrecv class
o results: an object of decode_results class

o Return*: int type. Returns 0 if a code was received, or 1if nothing received yet

e resume()
Description: Receive the next ir code Syntax: IRrecv.resume()
Parameter:

o [Rrecv: an object of IRrecv class.

o Return*: none

IRsend class

The IRsend class can encode and send infrared signals.

¢ |IRsend(object)
Description: Construct function of IRsend class Parameter:

o object: an object of IRsend class

e sendNEC()
Description: Sends the specified value in NEC encoded format. Syntax: IRsend.sendNEC(data, nbits)
Parameter:

o IRsend: an object of IRsend class. data: encode value to send

o nbits: number of encodeing bits

e sendSony()
Description:Send a code in Sony format. Syntax: IRsend.sendSony(data, nbits)
Parameter:

o IRsend: an object of IRsend class. data: encode value to send

o nbits: number of encodeing bits

e sendRaw()
Description: Send a raw code. Syntax: IRsend.sendRaw(buf,len,hz)
object:

o IRsend:an object of IRsend class
o buf: store the array of original code
o len: the length of the array

o hz: ir transmitting frequency

9.3 WIFI
ESP32 supports WiFi connection of both STA and AP mode.

e STA mode: ESP32 module connects Internet through router, and mobile phone or computer realizes remote control of equipment through
Internet.

e AP mode: ESP32 module acts as a hot spot to enable the communicate between the module and mobile phone/computer, and realize the
wireless LAN controlling.

e STA+AP mode: The coexistence mode of the two modes can realize seamless switching through Internet control, which is convenient for
operation.

#include <WiFi.h>

#include <HTTPClient.h>

#include <ArduinoJson.h>
HTTPClient http;

const char* ssid="dfrobotOffice";
const char* password="dfrobot2011";
const char* ntpServer = "pool.ntp.org";
const long gmtOffset_sec = 28800;
const int daylightOffset_sec = 0;
DynamicJsonDocument doc(1024);
DynamicJsonDocument doc1(1024);

void printLocalTime(){
struct tm timeinfo;
if(!getLocalTime(&timeinfo)){
Serial.println("Failed to obtian time");
return ;
}
Serial.println(&timeinfo, "%A, %B %d %Y %H:%M:%S");
}

void printLocalWeather(){
http.begin("http://www.weather.com.cn/data/cityinfo/101270101.html");
int httpCode = http.GET();
if(httpCode == HTTP_CODE_OK){
String pageData = http .getString();
//Serial.println(pageData);
deserializeJson(doc,pageData);
JsonObject obj = doc.as<JsonObject>();
String weatherInfo = obj["weatherinfo"];
deserializeJson(docl,weatherInfo);

Mem-ALL2 L L .24 B A P N I 2

Jsonuoject ODJ1 = JdocCli.ds<Jsonuojecta>y();
String city = objl["city"];

String templ = objl["templ"];

String temp2 = objl["temp2"];

String weather = objl["weather"];

String cityInfo ="Address: "+ city;

String tempInfo =" Temperature:
String cityWeatherinfo = " Weather: "
printLocalTime();
Serial.print(cityInfo);
Serial.print(tempInfo);
Serial.println(cityWeatherinfo);
}else{
Serial.println("GET ERR");

}
http.end();

void setup() {
Serial.begin(115200);
Serial.printf("Connecting to %s",ssid);
WiFi.begin(ssid,password);
while(WiFi.status()!=WL_CONNECTED){
delay(500);
Serial.print(".");
}
Serial.println(" CONNECTED");
configTime(gmtOffset_sec, daylightOffset_sec,

// printLocalWeather();
}

void loop() {
if(WiFi.status() == WL_CONNECTED){
printLocalWeather();
}else{

+ templ + "~" + temp2;
+ weather;
Serial.println("The weather conditions obtained are as follows:

ntpServer);

")s

Serial.println(“"WiF1 Disconnect™);

}

Description: This demo shows how to obtain the network time through WiFi function and get the weather by visiting the
http://www.weather.com.cn/datalcityinfo/101010100.html (http://www.weather.com.cn/datalcityinfo/101010100.html) . “101010100" in this
interface is the city code.

Note: you need to download arduino json library in this example, as shown below.

EE Esp32_httpClient | Arduino 1.8.4
= =R TE 1R #A

Bl fRiE Ctrl+R
= Ctrl+U
Espiill mEsEsbe Cirl+Shift+U
#includ SHBEREFEN AR Cirl+AR+S A
Ancludl - oo pmen Ctel+K S
Finclud ArEsE ; EI—1- ZIP E..
HITPC1: AT
const clET¥ S5I10= OITODOTUTTIICE | IE LS
const char# password="dfrobot20117: Bridge
e . Esplora
const char# ntpServer = "pool. ntp. arg” ;)
Et et
const long gntOffsetl sec = ZBE00; . =
. . Firmata
coenst int davlightOffset _sec = 0; .
DynzmicJsonDocunent dec(1024) ;
. Keyboard
Dynamic]sonDocument docl(1024) .
LiquidCrystal
) Mouse
veid printlacalTine () | Robot Control

http://www.weather.com.cn/datalcityinfo/101010100.html

D FEEs

ﬁﬂ! iﬁ'ﬁ W E-Eﬁ ﬁ L ﬁrdui.:n.o.]'inn

Ardubnolcan by Benoit Blanchon FZ 6.17.2 INSTALLED

A mimple and efficient J50N library for embedded C+ 4. Arduinclson supporss ¥ s=rnalization, ¥ daszrializabon. « MessagePads,
¥ fixad allocation, + zarc-copy, & streams, ¥ filtering, and mora. It is the most popular Arduino library on GitHub w*Ywe,
Chadt out arduincjson.org for a comprahensive documeantation.

More infg

..H_w'rn:'lelburum =y Tolenting Coteasta

Simple Ardvino Telegram BOT library for ESPA266 and ESP3Z & simpl=s, =a=yp bo us= snd =ssync Arduing librsry For using Tel=gram
bats on ESPB2SE and ESPEZ chips. In ordaer bo usse this ibrary you nead tha Arduinolsan library [releasae S.2¢) Installed. Inlina
kmybosrd =upported, Locslization me=sags=s supported. Fingerprint suthenticstion and 2.5.0 ESPE2EE Toolkchaird Likrsry support.
NEW: Reply Keyboard addsd

HMare infa

douddrpl-asp-arduima & Cloud 1D

Connect a board to the Cloud4RPi control panel using MOQTT - hittps:/ / dowd4 rpidio, Cloud4R P dient library for ESPE2GS 2nd ESP22
based boards. Dependancies: Arduinolson, FubSubcliant.

Mare infa

eS|

Result

ats Jun B8 2016 00:22:57

Fet:0xl (POVERON_RESET), haat:0x1b (SPT_FAST_FLASH_EOOT)
flash read err, 1000

=tz mpain.c 371

ats Jun B8 2016 00:22:57

rst:0x10 (RTCWDT_RTC_RESET),boot:0x1b (SP1_FAST_FLASH BOOT)

configsip: 0, SPIWP:0xes

clk drv:0x00, g drv:0x00, d_drv:0x00, cs0_drv:0x00, hd_drv:0z00, wp_drv :0x00
made :DI0, clack div:1

load:0x3f££0018, len:4

| oad:0x3£££001c, len:1044 Start

load:0x40078000, len: EB9G

load:0x40080400, len:-5814

entry 0x400808ac

Connecting to dirobotOffice. CONNECTED

wEITSEROT

Thursday, November 26 2020 13:43:34 —=pDemo result
A phEP BB 1610 2810 BRI MRS

WiFiClass

e begin()

Description: enable WiFi and connect to the specified wifi network
e status()

Description: Get WiFi status

HTTPClient

e begin()
Description: Analyze the incoming URL parameter information

e GET()
Description: Send get request to server

¢ end() Description: end this connection

DynamicJsonDocument

e deserializeJson ()
Description: analyze Json

* as()
Description: Get the top node and convert it to T-type

9.4 Blutooth

This demo creates a BLE_Server that can provide data and send notification for the client. When the server receives the data from the client, it
will send the received data to the client in the form of notification. That is, the notification service provided by BLE server in this demo only
serves to return the received client data.

#include <BLEDevice.h>
#include <BLEServer.h>
#include <BLEUtils.h>
#include <BLE2902.h>
#define SERVICE_UUID "DFCDO0O1-36E1-4688-B7F5-EAQ7361B26A8"
#define CHARACTERISTIC1 UUID "DFCDOOOA-36E1-4688-B7F5-EAO7361B26A8"
bool deviceConnected = false;
BLEServer *pServer;
BLEService *pService;
BLECharacteristic* pCharacteristic;
class MyServerCallbacks: public BLEServerCallbacks {
void onConnect(BLEServer* pServer) {
deviceConnected = true;

}s

void onDisconnect(BLEServer* pServer) {
deviceConnected = false;

}s
class MyCallbacks: public BLECharacteristicCallbacks {
void onWrite(BLECharacteristic *pCharacteristic) {
std::string value = pCharacteristic->getValue();

if (value.length() > @) {
Serial.println("***kkkkkkiy .
Serial.print("New value: ");
for (int i = 0; i < value.length(); i++){

Serial.print(value[i]);

}
Serial.println();
Serial.println("*dkkkkssokity o

R} W S IO SR S 2 W

pLnaracteristic->noctiTty\();

}
}
s
void setupBLE()

{
BLEDevice::init ("DFRobot_ESP32"); //Create BLE device

pServer = BLEDevice::createServer(); //Create BLE server
pServer->setCallbacks(new MyServerCallbacks()); //Set the callback function of the server
pService = pServer->createService(SERVICE_UUID); //Create BLE service
pCharacteristic = pService->createCharacteristic(
CHARACTERISTIC1_UUID,
BLECharacteristic::PROPERTY_READ|
BLECharacteristic: :PROPERTY_NOTIFY|
BLECharacteristic::PROPERTY_WRITE); //Create the characteristic value of the servic
pCharacteristic->setCallbacks(new MyCallbacks()); //Set the callback function of the chracteristic value
pCharacteristic->addDescriptor(new BLE2902());
pCharacteristic->setValue("Hello DFRobot");
pService->start();
BLEAdvertising *pAdvertising = pServer->getAdvertising();
pAdvertising->start();
}
void setup() {
Serial.begin(115200);
setupBLE();

}

void loop() {
delay(3000);

BLE Usage

In this demo, the module FireBeetle ESP32-E acts as the BLE server, and the client could be a mobile phone. Install a BLE helper on the phone to
establish BLE connection with the ESP32 module. Here we use the Light Blue on iPhone to show you how to do that, such kind of Bluetooth

software can also be found on Android phones.

The operation on the client is as follows:

FiE5:45 & @ O0°% .

LightBlUE Filter
m Not Now

& Search Peripherals By Name

.|||| Jnnamedad

-

|I||I U nnamed

Il DFRobot_ESP32

51 No services

NI [[pRp—_—

Jl wnnamea
78 1 service

Al Unnamed
e N0 services

all Unnamed

Sl ViLEs

Al Unnamed

. Tel=1:

(@) =] soe

Ferpherals Virtual Devices Lo P e

ool PEIETE 4G

{ Back Peripheral

DFRobot_ ESP32

UUID: ADISACIA-92AT-3170-6AFS-2FCF70DD5469

Connected

AMMIEATICEAMEAMT MATA] -

MUVERITIDODIVIEIN T LAAITMA SH WY

UuID:
DFCDO0O00-0000-...00-00805F9B34FB

OxDFCDO00A-0000-1000-8000-00805FIB34FB
Propertias: Raad Wite: Notify

@ » B -

FeErmpEErals Virtual Deveces L= rare

ool PEIEE 406

FTF5:46 & 00% .

{ DFRobot_ESP32 OxDFCDOO0O0A-0000-1... Hex

DFRobot ESP32 Set the format of data to receive/send

OxDFCDOO0OA-0000-1000-8...

ULID: DFCDOODA-0000-1000-8000-00805FOB34FB

Connected

Read data from the server

" READ/NOTIFIED VALUES

Read again

E} Cloud Connect

Receive notification

Listen for notifications

48656C6C6F204446526F626F74

1746200, 424

WRITTEN VALUES

Write new value

Send data to the server from here

DESCRIPTORS

1
Clent Characteristic Configuration

PROPERTIES

©)

Periplwerals Virtual Devices

Lo

More

€® com3 - | X

ets Jun 8 2016 00:22:57

rst:0x1 (POVERON_RESET), boot:0xlb (SPI_FAST_FLASH_BOOT)
flash read err, 1000

ets_main.c 371

ets Jun 8 2016 00:22:57

rst:0x10 (RTCWDT_RTC_RESET), boot:0x1lb (SPI_FAST_FLASH_BOOT)

configsip: 0, SPIWP:Oxee

clk_drv:0x00, q drv:0x00, d_drv:0x00, cs0_drv:0x00, hd_drv:0x00, vp_drv:0x00
mode:DIO, clock div:1

load:0x3f£f0018, len: 4

load:0x3fff001c, len:1044

load:0x40078000, len: 8896

load:0x40080400, len:5816

entrv 0x400806ac

T —
llew value: Hello DFRobot

Hkkokokkokok T — Received data from the client

A eazhizR RESEETETT o 115000 EEE o [fleer outeut d

| [y = L R A

BLEDevice

e init()
Description: create a BLE device

e createServer()
Description: create BLE server

BLEServer

e createService()
Description: create a BLE service

e setCallbacks()
Description: create server callback function

e start()
Description: turn off server

e getAdvertising()
Description: configure advertising function

BLEService

e createCharateristic()
Description: create the characteristic value of the service

BLECharacteristic

e setCallbacks()

Nacrrintinn: cat Fharactarictic vinalhiia Falllhacl fiinAtian

£, FI=H =T 1

i 3 Y o

W W e 3

IJCJ\-II'JLIUII- DCUL CIHIUITULLTTIOULIL VUIUCT VWUITVUGCUN TUrIvuvli

e addDescriptor()
Description:

e setValue()
Description: Set the value of the characteristic vlaue

e getValue()
Description: get the value of the characteristic vlaue

¢ notify()
Description: send notification

BLEAdvertising

e start() Description: start advertising

10 Using with IFTTT

What is IFTTT?

If This Then That (commonly known as IFTTT, /1ft/), is a web-based service that allows users to create chains of conditional statements triggered
by changes that occur within other web services. It is both a website and a mobile app of free service with the following slogan: "Put the
Internet to work for you". IFTTT aims to help people use the open API of various websites to monitor the triggers set by users. If triggers are
triggered, actions set by users will be executed. Usually, we can create n applets to meet our various automation needs.

IFTTT

If This Then That

Email Sending

Requirements
e Hardware

o FireBeetle ESP32-E x1

o FireBeetle Gravity IO Expansion Board x1
e Software

o Download IFTTT Library and Sample Code (https://dfimg.dfrobot.com/nobody/wiki/52ca4c18a70580ad4fa9766bed42cfda.rar)

Configure IFTTT

e Configure loT platform

1. Enter IFTTT website (https://ifttt.com/), register an account if you don't have one. Then Sign in.

For business Explore Sign in m

Make your
work more productive

Enter your email Get started

‘ Continue with Apple (G Continue with Gacgle] continus with Facebock

https://dfimg.dfrobot.com/nobody/wiki/52ca4c18a70580ad4fa9766be442cfda.rar
https://ifttt.com/

2. The following interface will appear when you signed in.

IFTTT R ey I

Start connecting your world.

Get more

3. Click "Create" to enter the interface below.

Create your own o

o bayned i thia than thot with gqesriss, genditional lppic. millepletctions, gl mon! Updsteio Pro

You've crested 1 of 3 applets

If This €

4. Click "if this" and input "webhooks" in the search bar.

Choose a service

Choose a service

Q webhooks

&S

Webhooks

5. The following interface when entering for the first time, click "Receive a web request".

Choose a trigger

6. Fill in the Event Name with "Message", then click "create this.

g0

Receive a web request

This trigger fires every time the Maker service receives a web request to notify it of an event. For information on triggering events, go to your
Maker service settings and then the listed URL {web) or tap your username [mobile)

Event Name

message

L

The name of the event, like "button_pressed” or
"front_door_opened”

Create trigger

7. The webpage will return back automatically. Click "that" and select "Email". Then click "send me an email".

Choose action service

Step 3 of &

Q email

Email Digest

Choose an action

N\

Send me anem ¢

This Action will send you
an HTML based email.
Images and links are

supported.

8. Click "Connect", fill in your emial address, and click "send PIN" to send a PIN code to your email box.

Connect Email

Enter the email address you would like to use for all of your Email Applets.

Email address

Enter the email address you would like to use for all of your Email Applets.

Email address

714173948@qq.com

Please enter the 4-digit PIN you received below.
PIN

5400

Retry

9. Check your email to find the PIN code, and fill it in the webpage, then click "Connect".

Connect Email

Enter the email address you would like to use tor all of your Email Applets.

Email address

lihva.liv@dfrobot.com

Pleasa enter tha 4-digit PIN you racaived balow.
PIN

8823

10. Click "Send me an Email" to edit the email.

E Choose action

[x

Sond me an email

This Action will send you
an HTML based amail.
Imeages and links are
supported.

ot ety ek

11. You can write the content to be sent to your email box in the interface below. Click "Create action”.

E Complete action fields

Step 5 of &

Subject

The event named *
EventMame " occurred on
the Maker Webhooks

service

What: EventMName <=br=
When: Occurredft

Extra Data: Valuel ,
Value? | Valued |

12. Click "Continue" to review, then click "Finish".

Review and finish

> N

Applet Title

If Maker Event "message"”, then Send me an email at
B B

by g714173948 67/140

13. Check IFTTT_Key: click your avatar, click "My services"-"Webhooks"-"Documentation”, then copy your key.

Home Explore Creafil Bl

Account

Activity

My servi cdﬂ/

Archive
Platform
Help

Sign out

Home Explore Create Learn Vv .

Documentation #* Settings

&S

Webhooks

Integrate other services on IFTTT with your DIY projects. You can create
Applets that work with any device or app that can make or receive a web

request. If you'd like to build your own service and Applets, check out the
IETTT platform.

e Burning Arduino Codes

o Open the built-in sample code

Examples for FireBeetle ESP32-E Boards

ArduinoOTA »

BluetoothSerial S

DM5Server >

EEPROM >

E5P32 ¥

ESP32 Async UDP >

ESP32 Azure loT Arduino S

ESP32 BLE Arduino -]

ESPmDMNS >

FFat)

HTTPClient 3 Authorization
HTTPUpdate 3 BasicHttpClient
MetBIOS ; BasicHttpsClient
Preferences 3 HTTPClientEnterprise
SD(esp32) 3 IFTTT

5D NMMC i ReuseConnection
SD SPI 3 StreamHttpClient

Sample Code

#include <WiFi.h>
#include <HTTPClient.h>
//Configure WiFi name and password

char *WIFI_SSID = "WIFI_SSID";
char *WIFI_PASSWORD = "WIFI_PASSWORD";
//Configure IFTTT

char *IFTTT_ENVENT = "Your_Event";
char *IFTTT_KEY = "Your_Key";
//IFTTT Send Message

char *IFTTT_VALUE_1 = "Valuel";

char *IFTTT_VALUE 2 = "Value2";

char *IFTTT_VALUE_3 = "Value3";

HTTPClient ifttt;

unsigned long lastTime = 0;

unsigned long timerDelay = 10000;

void setup() {

Serial.begin(115200);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.println("Connecting");
while(WiFi.status() != WL_CONNECTED) {
delay(500);

Serial.print(".");

}

Serial.println("");

Serial.print("Wifi Connect Success");

}

void loop() {

//Send an HTTP POST request every 10 seconds
if ((millis() - lastTime) > timerDelay) {
//Check WiFi connection status
if(WiFi.status()== WL_CONNECTED){

2 Fiaa TETTTA_ L /TrETTT O FANIFAIT TETTT /NS

ITULL. L1 ibeging(Lri 1 1_ENVENI,LFI1I1_KEY);
int dataSendState = ifttt.IFTTTSend(IFTTT_VALUE_1,IFTTT_VALUE_2,IFTTT_VALUE_3);
Serial.println(dataSendState);//Whether the printing data is sent successfully
}else {
Serial.println("WiFi Disconnected");

}

lastTime = millis();

}

e Configure Parameters in Arduino Code

//Configure WiFi name and password

char *WIFI_SSID = "WIFI_SSID";//Input WiFi name

char *WIFI_PASSWORD "WIFI_PASSWORD";//Input WiFi Password
//Configure IFTTT

char *IFTTT_ENVENT "Your_Event";//Input Event Name

char *IFTTT_KEY = "Your_Key";//Input the key you found in IFTTT
//IFTTT Send Message
char *IFTTT_VALUE_1
char *IFTTT_VALUE_2
char *IFTTT_VALUE_3

"Valuel”;
"Value2";
"Value3";//Configure the three values in email information

Result

Receive the data from FireBeele-ESP32-E in the Email box.

What: message
When: December 8, 2020 at 02:26PM
Extra Data: Value1, Value2, Value3,

Unsubscripe from these nofifications or sign in to manage your Email service.

Dimension

e Pin Pitch: 2.54mm

e Mounting Hole Pitch:

e Mounting Hole Size: 2mm

e Board Dimension: 25.4.00mmx60.00mm

e Thickness: 1.6mm

FAQ

1. Install Driver

FireBeetle-ESP32 adopts CH340 serial chip that can be used without driver among most devices. If you find the driver is not installed
automatically after plugging into the device, you can install it manually:click to download the CH340 driver program
(https://dfimg.dfrobot.com/nobody/wiki/0e0d6b3864f7163833ec5d7ad4af7632.EXE)

For any questions, advice or cool ideas to share, please visit the DFRobot Forum (https://www.dfrobot.com/forumy/).

More Documents

o FireBeetle Schematic (https://dfimg.dfrobot.com/nobody/wiki/fd28d987619c16281bdc4f40990e5a1c.PDF)

E Get FireBeetle_Board_ESP32_E (https://www.dfrobot.com/product-2195.html) from DFRobot Store or DFRobot Distributor.

(https://www.dfrobot.com/index.php?route=information/distributorslogo)

Turn to the Top

https://dfimg.dfrobot.com/nobody/wiki/0e0d6b3864f7163833ec5d7ad4af7632.EXE
https://www.dfrobot.com/forum/
https://dfimg.dfrobot.com/nobody/wiki/fd28d987619c16281bdc4f40990e5a1c.PDF
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/index.php?route=information/distributorslogo

